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ABSTRACT 

We investigate the abstract Cauchy problem 

d x(t)= A(I+ B)x(t) 

and apply the obtained generation results to feedback boundary control 
problems. 

1. Introduction and notation 

Let f~ be an open subset of R" with boundary F = 0fL Let  (X, ll" [I) be a 
n Banach space of functions 1~ R .  A typical boundary control system can be 

described as 

~ t ( Y , t ) = M x ( y , t ) + G u ( y , t  ), t > 0 ,  y E O ,  

(1.1) x(y,0)  = xo(y), y E O, 

7x (y , t )=Fu(y , t ) ,  t > 0 ,  y E F .  

Here  s¢ stands for a linear partial ditterential operator  acting in X, G is a 

continuous linear operator  from a Banach space U of control functions into X 

and F is a continuous linear opera tor  from U into the trace space of X and ~- 

denotes the linear boundary opera tor  that maps functions defined on ~1 onto 

functions defined on F. The control function u is assumed to belong to 

L/oo(O, ; U) (or LL(O, ; U)). 
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In practice, we can treat (1.1) via the semigroup approach as follows. 

Let A be a restriction of s¢ with homogeneous boundary conditions, i.e. for 

x ~ D (A) we have ~-x = 0. Then we are naturally led to define a linear operator 

D that maps the trace of a function into a function defined on 12 by 

Dv = g iff~l/v=0 and rv = g. 

If this operator is well-defined then we are led to the Cauchy problem 

-~x(t)d = A ( x ( t ) -  DFu(t)),  t >0,  

(1.2) x (0) = Xo. 

Equation (1.2), or, more generally the abstract Cauchy problem 

d x(t)  = a ( x ( t ) - ' ~ u ( t ) ) +  Gu(t) ,  t >0,  (1.3) d-t 

is called an abstract boundary control problem. 
The objective of this paper is devoted to the study of this problem and in 

particular the important case where the control u is built up in terms of the state 

x(-), i.e. u ( t )=  Kx(t) .  Usually, we have only a finite number of controls 

available and hence (1.3) becomes 

_d_i(t = A ( I  + B ) x ( t ) +  Glx(t) ,  t > 0 ,  

(1.3') x (0) = x0, 

where B is a linear (bounded) operator which has finite dimensional range. As 

G1 is a continuous linear operator the fundamental problem is to derive 

conditions such that A (I + B) generates a Co-semigroup on X. This question is 

investigated in detail in Section 3 whereas in Section 4 we present some 

interesting applications. 

Applications to optimal control problems as well as related approximation 

results will be considered, in detail in forthcoming papers. 

2. The generation theorems 

The objective of this section is to derive some conditions that guarantee that 

the boundary control problem (1.3) is well-posed, i.e. A (I + B) is the infinitesi- 

mal generator of a Co-semigroup on X. To begin with, we recall some 

well-known basic facts on linear C0-semigroups: 
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A family T(t), t =>0, of continuous linear operators on X 
Co-semigroup if 

T(0) = I, the identity map on X, 
T(t + s) = T(t)T(s) for all nonnegative s, t, 

lim T(t)x = x for all x ~ X. 

The infinitesimal generator A of T( . )  is given by 

O , A ,  x, exists / 

1 
Ax = lim ?(T(t)x - x ). 

t---~O + 

is called a 

For elementary properties of semigroups and their infinitesimal generators we 
refer to [2], [3], [7], [9], [16]. In particular, we mention that A is a closed linear 
operator and hence D ( A )  becomes a Banach space under the norm Ix [A = 

[]xll+llAxl[. (D(A),['[A)will be denoted by Xa. 
Moreover, we shall frequently make use of Bali's Theorem ([1]), stating that a 

closed linear operator C in X is the infinitesimal generator of a Co-semigroup 
T( . )  itt for each x E X there exists a unique weak solution u(t) satisfying 

~0 t (u( t ) ,x*)=(x,x*)+ (u(s),C*x*)ds forallt>=Oandx*ED(C*). 

In this case, we have u it) = T(t)x for all t >_- 0. 

Our main result on generation of semigroups is 

THEOREM 2.1. Let A be the infinitesimal generator of a Co-semigroup S(. ) in 
X. Let (Z, I • Iz) be a Banach space so that 

(Za) Z is continuously embedded in X, 
(Zb) for all continuous functions ~b : [0, t]-~ Z 

(Zc) 

So' S(t - s)ck(s)ds E D(A) ,  

I[ A fo' S ( t -  s)~b(s)ds [_-< y( t )sup[~b(s) lz  

where 7 : [0,oo)-->[0,oo) is a continuous, nondecreasing function with 3,(0)= O. 
Let B be a continuous linear operator X--* Z. Then A (I + B) is the infinitesimal 

generator of a Co-semigroup T(. ) on X. 
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For simplicity, we shall say that a Banach space (Z, [-Iz) satisfies condition 

(Z)  with respect to A itt (Za ) - (Zc )  hold. 

PROOF. W e  construct the solutions of 

d x ( t ) =  A ( I  + B)x(t), t > 0 ,  
dt 

x(O) = xo, 

by constructing a fixed-point of 

fo' x(t) = S(t)Xo + A S(t - s)Bx(s)ds. 

Fix xo E X and [ > 0. Then it is easily checked that the map 

fo' (Tz)(t) = S(t)xo+ A S(t - s)Bz(s)ds, 0 ~ t < [ 

maps C(O, [; X)  into itself, and for all 0 =< t < [ we have 

Tfo F II (Tz,)( t )  - (Tz2)(t)II ~ S O  - s )B( z l ( s )  - z2(s))ds 
A 

<= y(t)b sup I z~(s) - z2(s)}z 
O<s<~t 

where b is the norm of B regarded as an operator X--> Z. 

Choosing [ sufficiently small we conclude that there exists a unique fixed point 

of T. As by(t) does not depend on Xo, we may continue this procedure and 

obtain a continuous function x :[0, oo)--> X satisfying 

fo' x( t )= S(t)xo + A S( t - s )Bx(s )ds .  

We next set y( t )  = floX(s)ds. 

fo y(t)  = S(s)xods + 

= fo' S(s)xods + 

= fo' S(s)xods + 

fo = S(s)xods + 

Then 

fo' A ~oS S(s - ~')Bx('c)drds 

A fo' f '  Sts - OBx(Odsd~ 

f '  [S(t - T ) -  I]Bx('r)dv 

fo' S(t - r)BxO')dr - B fo' X(T)dv. 
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Consequently, 

and 

Therefore, we obtain 

A (I + B) is closed) 

FEEDBACK BOUNDARY CONTROL 

(I + B ) y ( t ) =  fo' S(r)xod'r + fo' S ( t -  r)Bx('r)dr 

A (I + B)y (t) = x(t)  - Xo. 

for all z * E D ( I A ( I + B ) ) * )  (note that 
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the operator 

which is zero. 

u(t) = fjo' S(t  - s)Bx(s)ds. 

As u'(t) = (I + B)x( t )  = A f'o S(t - s)Bx(s)ds + Bx(t),  x is the unique solution 
of 

fo' x(t)  = A S(t  - s)Bx(s)ds 

Hence for all xo ~ X there exists a unique weak solution and Ball's Theorem 
([1]) yields the claim. [] 

i.e. 

(fo' I (x ( t ) -Xo ,  Z*) = x ( s ) d s , ( A ( I  + B))*z* 

which implies that x ( - )  is a weak solution of 

d x ( t )  = A ( I  + B)x( t) .  
dt 

We next have to verify that this weak solution is unique. Putting y( t ) - -  

flo x (s)ds and x (0) = 0 we obtain for z * E O ((A (I + B))*) 

(x(t), z*} = (y(t), ( A ( I  + B))*z*} 

which implies that y (t) E D (A (I + B)) and 

y'(t)  = x(t)  = A ( I  + B)y(t) .  

Setting u(t) = (I + B)y(t) ,  finally, gives 

u'(t)  = Au( t )  + Bx(t) ,  
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From the practical point of view it is sometimes easier to verify the conditions 

given in the following theorem: 

THEOREM 2.2. Let (Z, I" Iz) be a Banach space and A be the infinitesimal 
generator of a G,-semigroup T(.  ) on X so that Z is continuously embedded into X. 
Then the following assertions are equivalent: 

(i) Z satisfies assumption (Z)  with respect to A, 
(ii) there exists a continuous, nondecreasing [unction [3 :[0,oo)-->[0,oo) with 

[3 (0) = 0 such that for all y * ~ X* the total variation of T*(. )y * on [0, t] taken 

with respect to the Z*-norm is bounded by [3(011 y* II, 
(iii) there exists a continuous, nondecreasing function [3 :[0,oo)--.[0,oo) with 

[3(0) = 0 such that for all y* G D ( A  *) and t > 0 

f ' Z*(s)A*y*l[z.ds =<[3(t)llY*[[. II 
) 

PROOF. To begin with, we show that  (i) implies (ii). Let  y * E  X* and let 

O= t0< t ~ < . . "  < t, = t be a parti t ion of [O,t]. Fix some r / > 0  and choose 

elements  z~ ~ Z so that ] zi Jz = 1 and 

> 1 
[(z~, T*(ti+l)y*)-(z,, T*(t,)y*) [ = 1 - T ~  ~ r T*(ti+,)y* - T*(t,)y* Iz'. 

We put ~b(s) = z, for t - t~+l < s < t - t. For sufficiently small e > 0 we set 

t - -  t i+ l  BE< S < t - -  t~+l + e ,  

t--t~+~ + e < s < t - - t ~  < e ,  

t - - t ~ - - e  <--_s<t- - t~ .  

T(r)zdrds = 1 (T(e)z  - T(r)z)d~ 
E 

! (s - t + t . , ) z ,  
e 

6 ~ ( s )  --  z,  

l (t t , - s ) z ,  

For all z E Z  we have 

A ( l  f , ~ sT ( s ) zds )=A  l 

and hence 

~ E 

lira A 1 sT(s)zds = O. 

Consequent ly,  A f'o T( t - s )ck . ( s )ds  converges to A f'o T( t - s )q ) ( s )ds  

e ~ 0 ÷. Making use of (i) we obtain 

A f: I Af ' II r( t -s)6(s)dsl l=Jim+ , Z(t-s)4,~(s)ds ~=~(t). 

a s  
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On the other hand we have 

n - I  

~ / T *  (t~+,)y* - T*(t~)y* [z* ~ (1 + T/) 
i = 0  

n - I  

(T(t,+,)z,, y*)- <T(t,)z,, y*) 
i = O  

= (1 + '0)  Y~ A r(s)cb(t-s)ds, y* 
i = ' )  \ . I t  i 

=<(1 + r/)7(t)[] y* ]1. 

As ,/ and the sequence (ti) were arbitrary, we obtain 

Varz.(T*(s )y *; 0 =< s =< t) _-< y(t)I[ Y* II. 

In order to prove that (ii) implies (iii) choose y* @ D(A *). Then we have for all 
t > O  

where (w*-d/dt) denotes the derivation in the weak-star topology. Hence ([3], 
Appendix) 

f, Varz.(T*(s)y*;O<-_s<-_ T ) =  IIr*(s)A*Y*[Iz'ds. 
) 

Finally, suppose that (iii) holds. Assume that ~b is continously differentiable 
[0, co) ~ Z. Then 

f' T(t-s)qb(s)ds ED(A) for all t ~ O .  
) 

Let y* E Y* such that IIY* Ii = 1 and 

liAr' T(t-s)6(s)ds =(A ~' T(t-s)eh(s)ds, y*). 

r,. T*(s)y*ds (where the integral is taken in the w*-topology), Putting y* = n jo 
we obtain 

lim,_~sup [] y*[]. = 1, and y*,---> y* 

in the w*-topology as n---> c¢. 
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<af = l ~,'(ch(s), T * ( t -  s)A *y*)ds 

f, -<_l14,1k ~ IIr*(t-s)A*y*~lfas 
I 

< fl(t)II y*ll II 6 II, ~ ~ , ~  . n 

Taking the limit n--> ~ yields 

If,' A T ( t - s ) 6 ( s ) d s  _-</3(t)J] 4, IIL~. 
I 

A standard closedness argument extends this result 

6 : [0, ~ )  ~ z .  

COROLLARY 1. Let Z be the Favard-class of T( .  ), i.e. 

Z = { x E x r  lim sup 1 } ,,~,~, t II Z(t)x  - x H is finite , 

1 
t x Iz = II x I1 + lira sup 7 ]l T(t)x  - x II. 

Then Z satisfies properties (i) and (ii) (see [6]). 

to all continuous 
[] 

COROLLARY 2. Let Y be a Banach space and let B be a continuous linear 

operator Y--~ X. Then there exists a subspace Z of X with a suitable norm I" Iz 
such that B is continuous Y ~ Z and Z satisfies (i) (or, equivalently (ii)) iff 

(iv) there is a continuous, nondecreasing function 3, :[0, ~)--~ [0, oo) with 3'(0) = 
0 and 

Var {B* T*(s ]x*;O<= s ~ t} <= 3"(t)Hx * l[ y* for all x * ~ X* 

or, equivalently, for all y * E  D ( A  *) and t >= 0 

f, (v) [I B* T*(s)A *y* I[~*ds <= T(t)fl y* 1[. 
J 

PROOF. Putting ~ ( t ) = y ( t ) ] B [ v . z  shows the implication (ii)--->(iv). The 
converse follows by putting Z = Range B with norm 

] B y l z =  inf l YLI. [] 
y l E Y  

B y t = B y  
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In the remaining part of this section we outline the relations of Theorem 2.1 to 

other generation results. In [6] the wellposedness of the abstract Cauchy 

problem 

(2.1) d x ( t )  = (A + K)x(t)  

is discussed where K is an A-bounded, linear operator. As we can write K as 

K = BA  + F with continuous linear operators B and F, (2.1) is well-posed iff 

(I + B ) A  generates a Co-semigroup. The connection between the problems for 

A ( I + B )  and ( I + B ) A  is clarified by 

THEOREM 2.3. Let A be a closed, densely defined, linear operator in X and let 

C be a continuous linear operator on X. 

(i) If  CA generates a Co-semigroup, so also does AC. 

(ii) if, in addition, X¢acr = Xa., then we have also the converse implication that 

CA generates a Co-semigroup provided A C  does. 

PROOF. Suppose that CA generates a Co-semigroup T(-)  on X. We put for 

a l l x E X  and t > O  

U(t)x = x + A rls)Cxds. 

Clearly, U(O)x = x for all x ~ X. For all positive s, t we obtain 

f/ U(t)U(s)x = x + A T(~)Cxd'r 

+ A f '  T(r)Cxdr+ A f '  T(r)Cd"cAf'T(~)Cxdo" 

fo A ' = x + A T(~)Cxdr + T(r)Cxdr 
I 

' A ' + A fo T(7 + s)Cx&- f T(7)Cxd.r 

= U( t  + s)x. 

As XcA = Xa and the mapping t~ f 'o  T(s)dsCx is continuous [ 0 , ~ ) ~  XA we 

thus conclude that 

f, t---~A T(s)Cxds is continuous [0, ~)-~ X. 
) 
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Consequently, U ( . )  is a Co-semigroup on X. So we are able to calculate its 

infinitesimal generator B. 

Choose x so that Cx E XA. Then 

~(U(t)x - x ) = l  A Io' T(s)Cxds. 

(1/t)f'o T(s)Cxds converges to Cx as t - * 0  + in the XA-norm and therefore 

/o' ! A T(s)Csds---> ACx as t -*O +. 
t 

Thus B is an extension of AC. Conversely, suppose that (l l t)A f'o T(s)Cxds 
converges to some y as t - * 0  +. As (1/t)f'o T(s)Cxds approaches Cx as t - * 0  + 

and A is closed we obtain y = ACx and so (i) is proved. 

In order to verify (ii), suppose that A C  generates the Co-semigroup U(- ). For 

x E X a ,  w e p u t f o r  t_->0 

T(t)x = x + C U(z)Axdr. 

Clearly, T(O)x = x and the mapping t -* T(t)x is continuous. As f'o U(r)Axd~ 
Xac we deduce that T(t)x E XA. Moreover, for all s, t > 0 we have 

r ( t ) r ( s )x  = x + C U(~')Axd~" 

+ Cfo' U(,)d~ACfo'U(~)Ax&r+ cf'o U(,)Axd'r 

Io :o = x + C U(r)Axdr + C U(~)U(s)Axd': 

= r( t  + s)x. 

Finally, we observe that 

!i~ ~ C U(r)Axd': = ! i~ (T(t)x - x) = CAx. 

So it remains to show that the operators T(t) can be extended to a family of 

continuous linear operators on X that are uniformly bounded on compact 

t-intervals. This family will constitute a Co-semigroup on X and by the 

core-theorem its generator equals CA. (It is only here where we need that A is 

densely defined!) For this purpose choose z * E X*. Then we have for all x ~ XA 
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and t => 0 

{T(t)x,z*)=(x,z*)+(Ax, I( U*(z)C*z*dr ) 

where the integral is taken with respect to the w*-topology. As 

we conclude that f~'~ U*(r)C* z* dz ~ X(AC)* and 

If; U*(z)C*z*dz (ACr<=M,lz*]], 

with a suitable chosen constant M. 

By hypothesis X(acr = Xa*, and hence we have 

Thus 

fo rO= < t < T 

llo'U*(~)C*z*&l~ ~M, llz*[[. 

(T(t)x,z*)-- x,A* U*(r)f*z*dr IIz*ll Irxll 

which, in turn, implies that I1T(t)x 11 <- M, 11 x [I, and hence the proof is complete. 
[] 

REMARK. Note that in Theorem 2.3(i) CA and not its closure has to be a 
generator. (Otherwise, the result is clearly wrong!) 

The following result may be regarded as a kind of dual result to Theorem 2.1: 

THEOREM 2.4. Let A be the infinitesimal generator of a Co-semigroup T(. ) on 
X. Let B be a continuous linear operator satisfying 

Vxar(BT(s)x }O< s <= t) < 3,(t)llx I] 

or, equivalently, 

~o' HBT(s)Ax ll <= y(t)llx]l ds 

where 3' is a continuous, nondecreasing [unction [0,~)---* [0,oo) with y ( 0 ) = 0 .  
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Then both (l + B)A and A I I  + B) are the infinitesimal generators of Co- 
semigroups on X. 

PROOF. Given a strongly continuous family U ( . )  of continuous linear 

operators on X we define for all x E D ( A )  

f Ix(U)(t)x : = r( t )x  + U(t - s)BT(s)Axds. 
I 

Clearly, pt(U)(t)x depends linearly on x and continuously on t. Moreover,  

II ~ ( g ) ( t ) x  II <= II T(t)x II + , II U ( t -  s)I1 II BT(s)Ax [I ds 

<lI T(t)x l]4- m fl' t ~s BU(s)x] ds 

< II T(t)x II + m Var(BT(s)x 10 =< s =< t) 

< [I T(t)x l] + my(t)II x II, 

implying tha t /x (U)( t )  can be extended to a continuous linear operator on X. 

Thus /x  (U)  is a strongly continuous family of linear continuous operators on 

X. 

Since 

f, II~(g)(t)x - ~(O)(t)x l[<_- , [I s ( t  - s ) -  U(t - s)ll [IBT(s)Ax II ds 

fo' --< ~,(t)flx II I I u ( t - s ) - O ( t - s ) r f d s  

we can apply a contraction-argument to get a unique fixed point U of /x. 

Taking the Laplace transform U ( . )  of U we obtain for all x @ D ( A )  

U ( A ) X  -- (A - A ) - l x  -1- U ( A ) B ( A  - A)-lAx,  

i.e. 

/ ] (A)(I  - B(A - A) - lA )x  = (A - A)-lx, 

/](A)(A - A - BA)(A - A)-lx  = (A - A)-lx  

which implies that U(A)(A - A - BA)y  = y for all y E D (A). Hence /](A) = 

( A - A - B A )  ~ and U is the C,-semigroup with infinitesimal generator 

( l  + B)A. By Theorem 2.1 also A (I + B)  is a generator. [] 
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3. Feedback for well-posed boundary control problem 

The objective of this section is to derive a general semigroup approach to 

boundary control problems. Again, let f~ be a bounded domain in R" with 

boundary U and let X be a Banach space of functions mapping ~ into R". Y will 

denote a Banach space of functions mapping F into R". Moreover, let @ be a 

dense linear subspace of X (for instance, ~(f i )  or C~(~)). 

Let A be a linear operator in X such that ~ C D ( A )  and B be a linear 

operator @ --> Y. 

We consider the initial-boundary-value problem 

d x ( t ) =  Ax(t),  t > 0 ,  

(3.1) x (0) = x, 

Bx(t) = v(t), t >=0, 

where the control v belongs to LPoo(0, oo; y).  
Roughly speaking, our goal is to show that if the open loop problem (3.1) is 

well-posed, then 
(i) the homogeneous equation gives rise to a Co-semigroup, 

(ii) there exists a continuous extension operator D such that x = Dy is a 

(generalized) solution to 

(A - A ) x  =0, 

Bx = y, 

(iii) the closed loop problem (i.e. (3.1) with the control v ( t )=  Fx(t)) is 

well-posed. 

DEFINITION. A continuous function 4,:[0,oo)---> X is called a strong solution 

of (3.1) if there exists a sequence (~b,) of (at least) continuously differentiable 

functions [0, ~)---~ X such that 

~b.(" ) E ~ for all t = O, 

4~. ---> 4~ in C(O, ~; X), 

d d-~C~.(t)-a~.(t)--->O in L~o~(O, ~; X), 

~b. (0) ~ x (in X) 

Bck,---~v in Li°o~(O, 0% X). 
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Here convergence in C means uniform convergence on bounded t-intervals 

whereas convergence in L,P,,c means LP-convergence on bounded t-intervals. 

DEFINITION. The initial-boundary-value problem (3.1) is said to be well-posed 

for controls in L~,c if there exists a unique strong solution 4 ' ( . ,  x, v) of (3.1) for 
P all x E X and v ~ L~,,c(0, oo; y) .  

We start our considerations with two technical iemmas: 

LEMMA 3.1. Suppose that (3.1) is well posed [or L~,c-Controls. Then the 

operator °71 given by 

(3.2) °//(v, x) = 4 ' ( . ,  x, v) 

is a continuous linear operator L ~,c(0, ~; Y) x X ~ C(0, oo; X). 

PROOF. By the closed graph theorem ([7], p. 57) it is sufficient to verify that o// 

is a closed linear operator. This elementary calculation is left to the reader. [] 

For our further investigations we need exponentially weighted function 

spaces. Let Z be a Banach space and 0 be a real number. We put 

4' eLL(O. ;Z)r [4' = , e-pO'lf4)lt)l(at<  

and 

c,(o, oo; z ) .  = {4' e c(o,  oo; z )  l e "4'(t) 
is bounded and uniformly countinuous on [0,oo)}. 

The corresponding norm is 

I & Io.= = supe-O' ] 4'(t)l • 
t>_O 

LEMMA 3.2. Let (3.2) be well-posed for L~,,c-controls. Then for each real 0 
there exists a 6 > 0 such that the operator °71 given by (3.2) maps LPo(O, oo, y )  x X 
continuously into C~ (0, ~; X). 

(This is just to say that exponentially bounded controls imply that the 

corresponding solutions are also exponentially bounded.) 

PROOF. To begin with, we consider the restrictions of 4, and v to the interval 

J = I 0, 1]. Clearly, 4' ]J depends only on x and v ]j. Thus by Lemma 3.1 we infer 
that the operator o-//j that maps (v ] j ,x ) in to  4 ' ( . , x , v ) l j  is continuous from 

LP(J; Y) × X into C(J; X). Consequently, there exists a constant M > 0 so that 
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for 0_<- t _-< 1 we have 

II +(t, x, v)ll--< M( I I~  II + II~(s)ll a~j # forO-<- t =< 1. 

For v C LPo<(O,~; Y) and any positive real m we define v , . ( . )  by 

v m ( t ) = v ( t + m )  for t =>0. 

Clearly, v ~ L~(O, ~; Y) implies that Iv., [0,o <= e o., t v I,.o. 
The uniqueness of strong solutions implies that for t >_- m 

6(t ,  x, v) = 4b(t - m, 4b(m, x, v), Dm). 

Without loss of generality we may assume that M > 1, 0 > 0  and hence we 

obtain for 0=< t =< 1 

II 6 ( t ,  x, v)ll = 

< 

(3.3) 
< 

II 4b(t - m, ~(m, x, v), i)m)II 

M( ll 6(m,x, v)ll+ (f' lt l)m(S)ilPds) I/p ) 
\ l i p \  M(ll@(m,x,v)ll+eO(fe-"O"ll~m(s)li"as) ) 

--< M(II @(m, x, ~)11 + eOe~"" I v I.... 
In particular (3.3) also holds for t = m + 1. 

Choose now 6 > 0 such that Me ~-o) < 1. Then we get 

e - " + "  II ~ (m + 1, x, v)II-<- Me-~e -m~ II @(m, x, v)II + Me-(8 °)e "<~-°' I v tp.o. 

An induction argument yields 

e-'~ II 45(m, x, v)ll--< ~ "  IIx 11+ ~, ,~"-Je-"'-°' I v I.,o 
#=o 

_-< <~m IIX I1+ m<," I ~ I .  

with c~ = Me ~-o~. 

Thus e "%k(m,x,v)-->O as m--->0o, and by (3.3) we infer that 4 ) ( ' , x , v )  
belongs to C~ (0, oo; X). 

By Lemma 3.1 a// is a closed linear operator  in L2o(O, ooY) x X---~ C~(0,oo;X) 

and hence it is continuous. []  

DEFINITION. We define an operator  W o : X × Y D D ( W o ) - - > X  by z =  

Wo(x, y) iff Bx = y and A x  = z. 
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LEMMA. 3.3. Suppose that (3.1) is well-posed for L,P,,c controls. Then the 

operator Wo is closeable in X x Y x X. I f  W denotes the closure of Wo, then for 

sufficiently large A ~ R and all x ~ X, y E Y there exists a unique solution z to the 

equation 

Az - W(z ,  y)  = x, 

as k goes to infinity. 

Putting 

and 

k f k 
-~" ( s ) d s  ~" e v.~ - ,~e y d s ~ O .  

) 

fo k e-"" g,~ (s)ds --o O, 

-"k,h t k ~ - e  "kcb(k ,x ,v)~O,  

j " k - ,~s 

zk = e q~,k(s)ds, 
0 I 

k 

- X s  S yk e v ,k(s )d ,  

given by 

z = e-X'Cb(t, x, v)dt, 
I 

where v is the constant[unction v( t )  = Ay. Moreover, z depends continuously on x 

and y. 

PROOF. We denote by W the closure of W0 in X z Y x X, which might be a 

multivalued operator. (In fact we shall prove finally that it is single valued.) We 

fix some 0 > 0 and choose 8 > 0 according to Lemma 3.2. Now let x C X, y ~ Y, 

A > & We put v ( t ) = A y  and z =foe-~'4)( t ,x ,v)dt .  Evidently, z depends 

continuously on x and y. We prove first that z satisfies A z -  W(z,  y ) =  x. 

Let 4~n be a sequence in C~(0,%X) with 

4o~- -~6( ' , x , v )  i nC(O,%X) ,  4o '~-A6~=g. - -~O inL~o~(O,%X), 

Bd~n=vn--+V in LPoc(0,% Y). 

Now we choose a sequence of integers nk ~ 0% such that 

f ke-*',h (s)ds -~' .~.~ - e ¢ ( s , x , v ) d s ~ O ,  
) ) 
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we conclude that Zk ~ Z, yk ~ y as k ~ ~. Fur thermore  

Wo(e-%k~ (s ), e -%~ (s)) = e-A'(ck'~(s)- g~ (s)). 

Using the closedness of the set W we see that 

~oke (dp.~(s)-g~(s))ds W(z~,yk)~ -A, , 

fo - - A k  As  = e  6 , ~ ( k ) - ~ b , , ( 0 ) + h z , -  e g,,(s)ds. 

Taking the limit for k ~ oo and using again the closedness of W we obtain 

W(z, y) ~ Xz - x. 

Next we show that the solution z is unique. Of course the proof is sufficient for 

x = 0, y = 0. Suppose that W(z, 0 ) ~  hz. Let z,---> z, y, ~ 0, x.---> 0 such that 

hz, - Wo(z,, y.)  = x,. Putting ~b,(t) = eA'zn, we see that 

ck.(t)--~eA'z in C(O, oo, X), 

q~'.(t)- Adg.(t) = eA'xn ---->0 

Bck,(t) = eA'y, ---~0 

Sn (0) = z, --, z 

in L ~oc(O, oo, X), 

• p 
m L,oc(O, oo, Y), 

in X. 

Consequently ~b(t) = eA'z is a strong solution to (3.1) with x replaced by z and 

v = 0. According to Lemma  3.2, the solution has exponential  growth 1[ ~b(t)II =< 

Me ~'. As ~ < h, this implies z = 0. 

Finally we prove that W is single valued, i.e. that Wo is closeable. Assume that 

W(O,O)~x. Then for each h > &  z = 0  is the unique solution to 

A z - W ( z , O ) ~ x .  Therefore  O=foe A'~b(t,x,O)dt. This implies that ck(t,x,O) 
vanishes identically, in particular x = 4, (0, x, 0) = 0 [] 

This lemma has two important  consequences. The first one is more or less well 

known, at least for certain important  special cases, but we include it for sake of 

completeness and self-consistency of the paper• 

THEOREM 3.1. Assume that (3.1) is well-posed for Lfoc controls• Then 

3-(t)x = ok(t, x, O) 

defines a Co-semigroup on X. Its infinitesimal generator M is given by 

~x  = z if/W(x, O) = z. 
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PROOF. The continuity of ¢ implies that J ( t ) x  is continuous in t. By Lemma 

3.2 we infer that each ~-(t) is a continuous linear operator on X. Evidently 

3-(0)x = ~b (0, x, 0) = x. The semigroup property follows by standard arguments 

from the uniqueness of the solutions to (3.1). To compute the infinitesimal 

generator of ~-(t), we notice that for sufficiently large h and all x E X 

fo z = ()t - 51)-tx = e-~'¢(t, x, O)dt, 

which is the unique solution to Az - W(z, O) = x. Thus 51 = W ( - ,  0). []  

Another consequence of Lemma 3.3 is the well-posedness of the stationary 

abstract boundary value problem 

(A - A ) z  = O, 

(3.4) Bz = y. 

Similarly to the evolution problem we have 

DEFINmON. By a strong solution to (3.4) we mean a z ~ X such that there 

exists a sequence z, in ~ with z, --* z in X, (A - A )z, ~ 0 in X and Bz, ~ y in 

Y. 

THEOREM 3.2. Suppose that (3.1) is well-posed for Lfoc-Controls. Then for 

sufficiently large h E R, there exists a continuous linear operator D : Y---~ X, such 
that z = Dy is the unique strong solution to (3.4). 

PROOF. One can easily check that z is a strong solution to (3.4) if[ h z -  

W(z, y ) =  0. Therefore, Theorem 3.2 is an immediate consequence of Lemma 

3.3. []  

The next result clarifies the semigroup approach to the boundary control 

problem. 

THEOREM 3.3. Let (3.1) be well-posed for LPloc-Controls. Fix h sufficiently large 

and let D be the operator defined above. Then the strong solution dp of (3.1) can be 

represented as 

qb(t,x, v )= J-(t)x - 51~0' f f ( t -  s)Dv(s)ds + A fo' f f ( t -  s)Dv(s)ds. 

PROOF, Let ~. E CI(R+,X) be such that ¢.  --* ¢ ( -  , x, v) in C(R+,X),  

d 
g, = ~-~ ~b. - A~b,---~0 L 1 I R  + ~ i n  ,ocx , - - /  
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and 

Thus 

Using the fact that 

we have that 

Consequently 
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p + 
v. = B4'. ~ v in L,o~(R , Y). 

Wo(c~.(t),v.(t)) = - g . ( t ) +  dqb.(t).  

W(Dv.(t), v.(t)) = hr .( t ) ,  

~¢(&, (t)  - D r .  (t)) = W(qb. ( t)  - D v .  (t), O) 

d 
= d--~ &.(t) - g.(t) - Av. (t). 

d (4~. (t) - Dv. (t)) = sC(dp. (t) - Dv. (t)) - d Dr. (t) - g. (t) + hv. (t); 

which implies by the variation-of-parameters formula: 

&. (t)  - D v .  (t)  = 3-( t )&.  (0) - f f ( t ) D v .  (0) - ~o' J-(t  - s)-~s D r .  ( s )ds  

+ fo' J - ( t -  s)g.(s)+ h fo' i f ( t -  s)v.(s)ds 

= ff( / ,~b.(0,-~-(t ,Ov.(O) - d  (fo' J - ( s ,Ov . ( t - s )ds)  

+ J-(t)Dv.(O)+ h fo' f f ( t -  s)Dv.(s)ds + fo' 3 - ( t -  s)g.(s)ds 

= ff(t)~b. (0) - Dv.(t) - Mfo' ~-(t - s)Dv.(t - s)ds 

+ fo' J-"- + f.o' 
The term Dr . ( t )  cancels off. 

Taking the limit for n ~ o o ,  we obtain (using the closedness of ~¢): 

~b(t, x ,0 )=  3-(t)x - M fo' ~-( t -  s)Ov(s)ds + A fo' ~- ( t -  s)v(s)ds. 

195 

[] 
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THEOREM 3.4. Assume that (3.1) is well posed for LPto~-Controls. Choose A 

sufficiently large and let D be the operator given as above. Then D satisfies the 

'generation condition': 

For each v E C(0,~; Y), t > 0 ,  

fo ' 3-(t s)Ov(s)ds E D(.ff), l 

PI Jl s4 J ( t - s ) D v ( s ) d s  _--NT(t) sup Ilv(s)ll 
s~-lO,tl 

where 3"(t) is nondecreasing, continuous, 3,(0)= O. 

PROOF. From Theorem 3.3 it is clear that f 'o~- ( t - s )Dv(s )dsED(s~) .  

Moreover, we know that there exists some 0 > 0 such that 

e-°' II 4,(t, x, v)II--< M[ v Ip,~ + M IIx II for some ~ > 0 (Lemma 3.2). 

Thus for v ~ C(R +, Y), t > 0  we obtain (using the fact that we may put v(s) = 0 

for s > t, as qb(t,O,v) depends only on v 11o4): 

I[,b(t,0, v)[[_--- e°'M e - " d s  sup IIv(s)ll 
se[O,t] 

<= e"Mt"P sup IIv(s)lJ. 
sE[O,tl 

Now 

! ~d fo' J-(t-s)Dv(s)dsli<= tA fo' J(t-s)Dv(s)dsl[+ II u(t, O, v)ll 

<-_(;~Mte°'llDll+ e°'Mt l/e) sup IIv(t)l[. [] 
s~lo,d 

An immediate consequence is 

THEOREM 3.5. Let F be a continuous linear operator X---> Y and suppose that 

(3.1) is well-posed for L foe-Controls. Then the operator s¢(I + DF) is the in]initesi- 

mal generator of a Co-semigroup on X. 

4. Applications 

In this section we want to apply the generation results of the previous section 

to hyperbolic boundary control problems. To begin with, we consider 
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4.1. Boundary Feedback for Nonsymmetric Hyperbolic Systems 

Again, let 1) be an open bounded domain in R" with boundary F. Let A(x, O) 
be a partial differential operator 

m 

A(x, cg)u = ~, A,(x)Oju + B(x)u. 
. /=1 

Here x = (x, . . . . .  x,,) E R", u(x) = (u,(x),. . . ,  uk(x)) is a k-dimensional vector 

function of x, 0j denotes the partial derivative O/Oxj. 
The coefficients Aj and B are smooth k x k-matrix-valued functions defined 

on  ~~. 

Given a smooth l × k-matrix-valued function M, and a continuous linear 

operator F : L2(11)---~ L2(F) we consider the mixed boundary control problem 

(4.1) 0__u = A(x, O)u in fl x [0, T], 
Ot 

(4.2) u(0) = u0 E L2(11) in f~, 

(4.3) Mu (t) = Fu (t) in F × j0, T]. 

The basic goal of our investigations is to show that this mixed boundary feedback 

problem is well posed in L2(I)). 

It is convenient to convert problem (4.1)-(4.3) into a problem on a half-space. 

This is done by means of local coordinate change and a partition of unity. For 

details, the reader is referred to [4], [5], for instance. 

Having done this, we call the new operator again M(x, a) and denote the new 

matrices again by M, F, Aj and B, respectively. The region is now 

f~={x ER" Ix =(x,,x2 . . . . .  x,.),x~ >0), 

with cgf~=tx ~ R "  Ix,=0}. 
We impose the following standard conditions: 

(H1) A (x, 0) is strictly hyperbolic, i.e. 2j"_-1 Aj~ has k distinct real eigenvalues 

for all nonzero s c E R" and x E 1~. 

(H2) The boundary F is non-characteristic, i.e. det A~(x)~ 0 for all x G F. 

Let l denote the number of negative eigenvalues of A,(x) for all x G F0. 

(H3) The boundary operator M can be written as 

M = (I, S) 
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where I is the l × l identity matrix and S(x) is an I x k -  l smooth 

matrix valued function. 

REMARK. Note that A(x, &) is in general nonsymmetric and the boundary 

conditions are not assumed to be dissipative. 

The main goal of this section is to show that the mixed initial boundary 

feedback problem is well posed, i.e. (4.1)-(4.3) admits a unique strong solution in 

L2(fl): 

THEOREM 4.1. For any uo E L2(Iq) the mixed problem (4.1)--(4.3) has a unique 
strong solution u(" ) belonging to C(O, T; L 2(fO). 

PROOF. The main theorem in [17] implies that the associated open loop 

problem is well-posed for L~,c-controls and hence the result follows from 

Theorem 3.5. 
On the other hand, the machinery in getting Rauch's result is very sophisti- 

cated and therefore it seems to be justified to prove the theorem in a direct and 

(at least from the semigroup point of view) more transparent way, which will be 

indicated in the Appendix. 

4.2. Boundary Feedback Problems for Second-Order Hyperbolic Equations 

In this section we are concerned with the feedback acting on the boundary for 

second order hyperbolic problems. 
Let fl be a bounded open set in R" with boundary denoted by F. Let A (x, O) 

be a second-order strongly elliptic operator with smooth coefficients. 

The problems under consideration are 

02U=A(x,O)u in tq x (0, T], Ot 2 

u (0) = Uo ~ L 2 ( ~ ) ,  

(I) 
Ou 
Ti (0) = u, ~ H- ' (~  ), 

u(t) I'" = Fu(t), 

where F is a continuous linear operator L2(12)---~ L2(F), and 
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02U 
Ot 2 = A(x,O)u in ~ × ( 0 ,  T) 

u (o) = Uo ~ L2(~), 
(II) 

-~(0)  = E H U l 

F Ou "t" u( t ) l , - -  - ~  J, 

where F is a bounded linear operator H-~(O) into L2(F). 

REMARK. An important special case of operators F is provided by finite rank 

feedback, i.e. 

N 

Fu = ~ (u, wi)L2~.~gj 
)=1 

with wi U LZ(f~) and gi E L2(1~) for problem (I) and wj E D ( A  El2) in case of (I1)7 

respectively. Note that specific forms of such finite rank feedbacks are consi- 
dered in [13] and [18]. 

The main result of our considerations is 

THEOREM 4.2. The boundary feedback control problems (I) and (II) are 

well-posed on L2(f0 × H- ' (~) ,  i.e. for any u,, E L2(~) and u~ E H-~(fO there is a 

unique weak solution u(t, uo, u~). 

PROOF. To begin with we collect for the reader's convenience some general 
properties that are well known in the literature. 

Define a linear operator A in L2(f~) by 

D ( A ) = { u ~ L 2 ( n ) I A u @ L 2 ( I I )  and u[,,=O}, 

Au = A(x, O)u. 

Then A is the infinitesimal generator of an analytic C~-semigroup on L2(tl). 
Moreover, A is also the generator of a sine and cosine family of continuous 
linear operators on L2(I)) denoted by S( . )  and C( ' ) ,  respectively. 

The associated linear operator ~4, 

D(M) = D (A) x H~(fl), 
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is the infinitesimal generator of a C0-group T(. ) on H~(fl) x L2(fl) which can be 

represented as 

[ C(t) S(t) T(t) 
t AS(t)  C(t)]" 

It is a classical result in semigroup theory that the operator sq with domain 

Ho~(fl)x L21~) is the infinitesimal generator of a C0-semigroup on L2(fl)x 

H-l(fl). As we can assume without loss of generality that fractional powers of A 

are well defined we have H~(I~) = D ( A  i/2). We first turn to problem (I). Let D 

denote the Dirichlet map, the "harmonic" extension of boundary data into the 

interior given by 

Dg = y 

where A (x, O)y = 0 in f~ and y 1, =g. 

It is a well known result that for all real s, D is a continuous linear operator 

H ' (F)  into w+"~(a). 
Making use of this result we can apply semigroup methods to 

Putting 

&2U=A(x,&)u, 
8t 2 

. ( o )  = ., , ,  

Ou "0" ~1, )=u , ,  

u I,.= g. 

B =  0 

we claim that ~ ( I  + B) generates a C0-semigroup on X = L2(I)!) x H-l(fl). As B 

is a continuous linear operator in X (in view of the regularity of D)  we have to 

compute B* in order to use Corollary 2. 

Using the representation of T(- )  we obtain 

Note that the pairing is given by 
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( ( X l )  (x2))=(xI,x2)LZ(I~)h_(A,-I/2yI, A,-II2 " 2 y, ' ye y2)L ~m- 

Thus, for all x = (x,, x2)C X we obtain 

l; IJS*sq*T*(s)x l~ds 

I' I, + ' 
= IIF*D*A*S*(s)x, lk~<o,ds I IF,D,C,(s)A, , /2A ,,2 x i ) 2 L (~) 

(£ I ) _-< const II D ' A *  S*(s)x, [iL2,,.,ds + II D* C*(s)A *'nn-'nx: [k2,,.)ds 
) 

(f' = const , [ll D*A *S*(s)x, ILL2<,-, + [I D*A *l/2C*(s)n -'/2x2 IIL2,,->lds. 

(Note that D(A ,2) = D(A .,,2).) 

Now, the operators 

(J,x)(t) = D*A *S*(t)x, 

(J2x)(t) = D*A *"2C*(t)x 

are both continuous linear operators L2(I]) into L2([0, T ] x F )  (see [12], 

Theorem 2.1). Hence by the Schwartz inequality 

t f, II Z * ( s ) x  I b A s  const  Xl llL2IF)II llL2(F)) B ',/-till =< + A ~-1/2X2 

= const ',/711 x I1,< 

which implies the claim. 

As the assertion concerning problem (II) is proved along the same lines with B 
given by 

0 
B = ( 0  

we leave the details to the reader. 

Appendix: Sketch of the Proof of Theorem 4.1 

As indicated, we will give a direct proof of Theorem 4.1. As the details are 

lengthy and tedious we shall avoid all the details and restrict ourselves to 

working out the main ideas. 
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To begin with, recall that the linear operator A given by 

D ( A  ) = {u ~ L 2(f~) ! Au  E L 2(f~), Mu [r =0}, 

A u = A ( x , d ) u  for u E D ( A )  

is the infinitesimal generator of a C0-semigroup T( . )  on L2(I~I (see [ l l  D. 
Next, define an extension operator D by 

v = D g  i t t A ( x , d ) v - k v = 0 i n f ~  

(4.4) and My = g  in F, 

where k is a positive sufficiently large constant. 

If A(x,  ~) is symmetric and M is dissipative the existence of a continuous 
operator D satisfying (4.4) is established in [8], [19]. In our general case we get 

PROPOSITION 4.1. There exists k > 0 such that (4.4) defines a unique linear 
continuous operator D : L2(F)--~L2(f~). In addition there exists a constant C 

independent of g such that 

(4.5) II Dg IIL2,,~ +[Dg [L2,r)=< c II g tIL'¢,. 

The proof follows closely the arguments given in [10]. As it relies heavily on 
the theory of pseudoditterential operators we cannot give all the details and refer 
the reader to [10]. 

SKETCH OF THE PROOF. Suppose that the coefficients of A and M are 
constants, in fact frozen at their boundary value at (0, x'). Applying Fourier 
transform in x' with the dual variable denoted by w = (w2 . . . . .  w~), we obtain 

:: = Al-d-~x + i Ajwjfi, 

Mfi =~. 

Consequently, we have 

dx-----~ = A ~ ~ fi - i ~ A,w,~ 
/=2 

= : M(x, w)::. 

If we consider variable coefficients then we get the pseudodifferential version 

dO 
dxl = M(x, w)O 

where M(x, w)=  M(x, Dx) is a pseudoditterential operator of the first order. 
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In the next step we use the Kreiss-symmetrizer, which is constructed locally, 
i.e. in a conical neighborhood of a boundary point. To be more specific, the 
symmetrizer is a zero-order pseudodifferential operator with symbol R ( k ,  x, co) 

with L2-norm independent of k and such that there exist d and c > 0 with 
(i) R is Hermitian, 
(ii) R is homogeneous of degree zero in (k, co) for k 2 + o92 => 1 and is a smooth 

function in its variables and the coefficients matrix Aj and of S, 

(iii) v * R v  >= d Iv 12 - c I g I ~ for all vectors v that satisfy the boundary condi- 
tions, i.e. Mv = g  on F, 

(iv) Re R M  >= dkI. 

Multiplying both sides of (4.6) by R (k, x, co) and taking the inner product with 
~3, we obtain 

R d 

/ .  / .  

( f , g ) '=  IR~_ ' f(co)g(co)dco and (f ,g)= Jo f ( x , )g (x , )dx , .  

Integration by parts with respect to x, yields 

Re ((R~x113, ~3)) = Re ( (~xl  z3, Rt3)) 

,t// d x  1 

Consequently, 

2 Re ( ( R ~ x  t3, z3))=-(f) lx,=o,R'k=o}-Re((f~,d-~lR')) .  

Condition (iii) implies that 

where in the last estimate we used the fact that R is a smooth zero order 
operator. 

On the other hand, we have 

Re((RM~3, ~3)) _-> d II t3 II~,a, 

and combining the last two estimates we arrive at 

where 
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2 ~ _ _  2 2 

dk II ~3 ILL=,,)= d 1~3 Ix.=,, 1~2¢) + c [g IL=,r,, + C II ~ ILL2,,, 

for all ~3 such that Mz3 = ~ on F. 

Consequently, 

(dk - C)1[ f~ IIG.> + d I v I.,=o IGF) = c I g IGF,. 

By taking k sufficiently large and using the Parseval equality, we get the energy 
estimate claimed in the Proposition. 

To prove existence of the map D (uniqueness follows immediately from the 
above estimate), we repeat the same procedure for the adjoint problem and then 
apply the usual technique of [14]. 

Our next step is to verify the representation formula for the solution of the 
boundary-initial value problem: 

LEMMA 4.1. Let u be the solution of the initial-boundary value problem 

d u(t) = A(x ,  O)u(t), 
dt 

u (0)  = uo, 

Mu = g. 

Then u(" ) can be represented as 

Io fo' u(t) = T(t)uo - A r ( t  - s)Dg(s)ds "+ k T(t - s)Dg(s)ds. 

The operator A f;  T( t - s )Dg(s )ds is a continuous linear operator L2(0, T; F) into 

L~(0, T; L2(a)). 

The proof follows easily by making use of estimate (1.9) in [10]. 
So we are to verify that the operator A (I + DF)+ kDF is the infinitesimal 

generator of a Co-semigroup on X. 
Since kDF is a continuous linear operator we can ignore this term when 

dealing with the generation problem (i.e. we put k = 0). 

LEMMA 4.2. For all x* E D ( A  *) we have 

D * A * x  = A~-x- Ir 

where 

( A ?  O) 
x = ( x - , x  ÷) and A t =  0 A~ " 

This decomposition is implied by assumption (H2). 
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PROOF. It is easily verified that the adjoint A * of A is given by 

(4.5) A *u = - ~ Af(x)Oju - ~, OjA~(x)u 

with D(A*)={uEL2(Ut)]A*uELZ(f l )  and M*ulr---O } where M * =  
T - 1  T - ( A , )  S A, , Ik- , ) .  

For y E D(A*) and g E L2(~), we obtain 

(A *y, Dg)L~n) = ((A *(x, 0)y, Dg)L~(a) 

where A *(x, 0) is the formal adjoint of A(x, O) given by the right hand side of 

(4.5). 

Using Green's formula yields 

CA *y, Dg)L~m) = (y, A (x, O)Dg)L~a)+ (A,y, Dg)L~v~. 

Now, A (x, O)Dg = 0 and consequently 

( D * A  *y, g)L~¢) = (Aly, Dg)L~¢~. 

As y belongs to D(A*), we conclude that M*y I t=O, i.e. y can be written as 

y = (y , y+) with 

-(A~;)-~STA~y-+ y+ =0.  

On the other hand 

is equivalent to 

MDg [r = g 

Dg- + S(Dg) + = g. 

Therefore 

= (A~y-, g - S(Dg)+)L~r)+ (A~(A~iI-~S'rA~y -, (Dg)+)L2O-) 

= (A ?y , g)L~¢) - (STA ~-y-, Dg+)L2~r) + (STA ~y-, Dg+)L~r) 

= (A ?y-,  g)L~¢~. 

Thus 

(D *A * y, g }L~¢) = (A ~-y-, g)L~¢) 

and as this equality holds for g ~ L2(F) the claim follows. 
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We next investigate the operator J defined by 

(Jx)(t) = D*A *S*(t)x. 

LEMMA 4.3. J is a continuous linear operator L2(I)) into L2(O, T; L2(F)). 

PROOF. We use the regularity result from Chang [4] stating that there exists a 

constant c such that 

fT r tT*(t)x [,.IL~,,.,dt<clx ) 

With this estimate in mind, we obtain making use of Lemma 4.2 

f f0 2 T I D ' A *  T*(t)x {L~o,)dt < I A ;(T*(t)x)-I~o.)dt ) 

f T  < const I(T*(t)x)-1~2w~dt } 

_-< const f TJZ*(t)x IG~dt 
=cons t  Ix ] 2 . 

PROOF OF a'rIE THEOREM. With X = L 2 ( f ~ )  and B =DF the 'generation 

condition' becomes 

I '  )B*A*Z*(s)x  IL2,,,ds ~,(t)llX !!- <= 

The left hand side becomes for our example 

f '  IF*D*a*T*(s)xlds<=const f, ' ID*a*T*(s )x lds  

<=const(f ']D*A*T*(s)xl2ds)' /2t '/2 

=< const t '/2 II x [I 

(by Lemma 4.4). []  

ACKNOWLEDGEMENTS 

The work of W. D. was mainly done during a visit at the University of 

Southern Illinois at Carbondale. It is a pleasure to thank Southern Illinois 



Vol. 51, 1985 FEEDBACK BOUNDARY CONTROL 207 

University for their kind hospitality and the Austrian-American Educational 
Commission for financial support to make this visit possible. 

The work of I. L. was partially supported by NSF grant DNS 830 1668. 
The work of W.S. was partially supported by Fonds zur F6rderung der 
Wissenschaftlichen Forschung S 3206. 

REFERENCES 

1. J. Ball, Strongly continuous semigroups, weak solutions and the variation of constants formula, 
Proc. Am. Math. Soc. 63 (1977), 370-373. 

2. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, North- 
Holland, 1976. 

3. H. Brezis, Operateurs maximaux monotones et semigroupes de contractions dans les espaces de 
Hilbert, North-Holland, 1973. 

4. S. Chang, Riccati equations for nonsymmetric and nondissipative hyperbolic systems, Ph.D. 
Thesis, Univ. of Florida, 1984. 

5. L Chazarain and J. Piriou, Introduction a la theorie des equations aux derivees partielles 
lineaires, Gauthier-Villars, 1981. 

6. W. Desch and W. Schappacher, On relatively bounded perturbations of linear Co-semigroups, 
Ann. Sci. Norm. Super. Pisa 11 (1984), 327-341. 

7. N. Dunford and J. Schwartz, Linear Operators I, Interscience, 1957. 
8. K. O. Friedrichs and P. Lax, Boundary value problems for first order operators, Comm. Pure 

AppI. Math. 18 (1965), 355-388. 
9. T. Kato, Perturbation Theory for Linear Operators, Springer, 1976. 
10. H. O. Kreiss, Initial boundary value problems for hyperbolic equations, Comm. Pure Appt. 

Math. 13 (1970), 277-298. 
11. I. Lasiecka and R. Triggiani, A cosine operator approach to modelling L~(0, T, L2(F))- 

boundary input hyperbolic equations, Appl. Math. Optim. 7 (1981), 35-93. 
12. I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations with L2(0, T; L2(F)) Dirichtet 

boundary terms, Appl. Math. Optim. l0 (1983), 275-286. 
13. I. Lasiecka and R. Triggiani, An L 2 theory for the quadratic optimal cost problem of 

hyperbolic equations, in Control Theory for Distributed Parameter Systems and Applications (F. 
Kappel, K. Kunisch and W. Schappacher, eds.), Springer Lecture Notes in Control and Information 
Sciences 54 (1983), 138-152. 

14. P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear 
differential operators, Comm. Pure Appl. Math. 13 (1960), 427-455. 

15. A. Majda and S. Osher, Initial boundary value problems for hyperbolic equations with 
uniformly characteristic boundary, Comm. Pure Appl. Math. 28 (1975), 607-676. 

16. A. Pazy, Linear Semigroups and Applications, Springer, 1983. 
17. J. Rauch, L 2 is a continuable initial condition for Kreiss' Problems, Comm. Pure Appl. Math. 

25 (1972), 265-285. 
18. R. Triggiani and I. Lasiecka, Boundary feedback stabilization problems for hyperbolic 

equations, in Control Theory for Distributed Parameter Systems and Applications (F. Kappel, K. 
Kunisch and W. Schappacher, eds.), Springer Lecture Notes in Control and Information Sciences 54 
(1983), 238-245. 

19. R. Vinter and T. Johnson, Optimal control of nonsymmetric hyperbolic systems in n-variables 
in half spaces, SIAM J. Control 15 (1977), 129-143. 


